Gas Leak on Converter 1st Pass Outlet

 $P/P_A = 1.231$ less than 1.893 $[(k+1)/2]^{k/(k-1)}$ therefore the flow is non-choked (i.e. subsonic), and the following equation applies

Q = $CAP\sqrt{(2g_c/ZRT)(K/K-1)[(P_A/P)^{2/K} - (P_A/P)^{(K+1)/K}]}$

					psia	psig	in vvc
Q = mass gas flow (lbs/s)			$K = C_p/C_v$ of the gas	1.4			
C = discharge coefficient	0.65		P = source pressure absolute (lb/ft²)	2606	18.1	3.4	94
Equivalent Diameter of hole (in)	0.25		P _A = ambient pressure absolute (lb/ft ²)	2117	14.7		
A = area of hole (ft ²)	0.00034		M = molecualr weight of gas	34			
g_c = gravitational constant (ft/s)	32.17		Z = compressibility factor	1.077063			
R = gas constant (ft-lb/lb mol - $^{\circ}$ R)	1543.3		Release duration (seconds)	3,600			
T = temperature (°R)	1037	303 °C	SO ₃ concentration in gas (wt%)	0			
Molecular weight of SO ₃	80		SO ₂ concentration in gas (wt%)	1.0			
			Molecular weight of SO ₂	64			

Intermediate Calculations:

0.00127

3.5

0.74315

0.70031

0.57707

Mass Calculations:

Q =

0.0080 lbs/s

Total mass:

29 lbs

Total SO₃ mass:

0 lbs

Total SO₂ mass:

0.29 lbs

Reference: "Perry's Chemical Engineering Handbook, 6th Edition, McGraw-Hill 1984"

EXHIBIT # COUNT REPORTING & ASSOCIATES, DK.

COUNT REPORTING & LITERATION SERVICES
WWW.torresreporting.com

Gas Leak on CIP - Cold Side

 $P/P_A = 1.172$ less than 1.893 $[(k + 1)/2]^{k/(k-1)}$ therefore the flow is non-choked (i.e. subsonic), and the following equation applies

Q = $CAP\sqrt{(2g_c/ZRT)(K/K-1)[(P_A/P)^{2/K} - (P_A/P)^{(K+1)/K}]}$

					psia	psig	in WC
Q = mass gas flow (lbs/s)			$K = C_p/C_v$ of the gas	1.4			
C = discharge coefficient	0.65		P = source pressure absolute (lb/ft²)	2481	17.2	2.5	70
Equivalent Diameter of hole (in)	0.25		P _A = ambient pressure absolute (lb/ft ²)	2117	14.7		
A = area of hole (ft ²)	0.00034		M = molecualr weight of gas	34			
g _c = gravitational constant (ft/s)	32.17		Z = compressibility factor	1.077063			
R = gas constant (ft-lb/lb mol - °R)	1543.3		Release duration (seconds)	3,600			
T = temperature (°R)	627	75 °C	SO ₃ concentration in gas (wt%)	0			
Molecular weight of SO ₃	80		SO ₂ concentration in gas (wt%)	1.0			
			Molecular weight of SO ₂	64			

Intermediate Calculations:

0.0021 3.5 0.79714 0.7618 0.54942

Mass Calculations:

Q = 0.0089 lbs/sTotal mass: 32 lbs
Total SO_3 mass: 0 lbs
Total SO_2 mass: 0.32 lbs

Reference: "Perry's Chemical Engineering Handbook, 6th Edition, McGraw-Hill 1984"

Gas Leak on CIP - Hot Side

 $P/P_A = 1.172$ less than 1.893 $[(k+1)/2]^{k/(k-1)}$ therefore the flow is non-choked (i.e. subsonic), and the following equation applies

Q = $CAP\sqrt{(2g_c/ZRT)(K/K-1)[(P_A/P)^{2/K} - (P_A/P)^{(K+1)/K}]}$

					psia	psig	in WC
Q = mass gas flow (lbs/s)			$K = C_p/C_v$ of the gas	1.4			
C = discharge coefficient	0.65		P = source pressure absolute (lb/ft²)	2481	17.2	2.5	70
Equivalent Diameter of hole (in)	0.25		P_A = ambient pressure absolute (lb/ft ²)	2117	14.7		. •
A = area of hole (ft^2)	0.00034		M = molecualr weight of gas	34			
g _c = gravitational constant (ft/s)	32.17		Z = compressibility factor	1.077063			
R = gas constant (ft-lb/lb mol - °R)	1543.3		Release duration (seconds)	3,600			
T = temperature (°R)	1113	345 °C	SO ₃ concentration in gas (wt%)	25			
Molecular weight of SO ₃	80		SO ₂ concentration in gas (wt%)	1.0			
			Molecular weight of SO ₂	64			

Intermediate Calculations:

0.00118 3.5 0.79714 0.7618 0.54942

Mass Calculations:

Q = 0.0066 lbs/sTotal mass: 24 lbs
Total SO_3 mass: 6 lbs
Total SO_2 mass: 0.24 lbs

Reference: "Perry's Chemical Engineering Handbook, 6th Edition, McGraw-Hill 1984"